▷ 浅析 V8-turboFan(上)

⌹ 365bet线上 ⏱️ 2025-07-14 20:26:04 👤 admin 👁️‍🗨️ 7370 ❤️ 37
浅析 V8-turboFan(上)

一、简介

v8 是一种 JS 引擎的实现,它由Google开发,使用C++编写。v8 被设计用于提高网页浏览器内部 JavaScript 代码执行的性能。为了提高性能,v8 将会把 JS 代码转换为更高效的机器码,而非传统的使用解释器执行。因此 v8 引入了 JIT (Just-In-Time) 机制,该机制将会在运行时动态编译 JS 代码为机器码,以提高运行速度。

TurboFan是 v8 的优化编译器之一,它使用了 sea of nodes 这个编译器概念。

sea of nodes 不是单纯的指某个图的结点,它是一种特殊中间表示的图。

它的表示形式与一般的CFG/DFG不同,其具体内容请查阅上面的连接。

TurboFan的相关源码位于v8/compiler文件夹下。

这是笔者初次学习v8 turboFan所写下的笔记,内容包括但不限于turboFan运行参数的使用、部分OptimizationPhases的工作机理,以及拿来练手的GoogleCTF 2018(Final) Just-In-Time题题解。该笔记基于 Introduction to TurboFan 并适当拓宽了一部分内容。如果在阅读文章时发现错误或者存在不足之处,欢迎各位师傅斧正!

二、环境搭建

这里的环境搭建较为简单,首先搭配一个 v8 环境(必须,没有 v8 环境要怎么研究 v8, 2333)。这里使用的版本号是7.0.276.3。如何搭配v8环境?请移步 下拉&编译 chromium&v8 代码

这里需要补充一下,v8 的 gn args中必须加一个v8_untrusted_code_mitigations = false的标志,即最后使用的gn args如下:

# Set build arguments here. See `gn help buildargs`.

is_debug = true

target_cpu = "x64"

v8_enable_backtrace = true

v8_enable_slow_dchecks = true

v8_optimized_debug = false

# 加上这个

v8_untrusted_code_mitigations = false

具体原因将在下面讲解CheckBounds结点优化时提到。

然后安装一下 v8 的turbolizer,turbolizer将用于调试 v8 TurboFan中sea of nodes图的工具。

cd v8/tools/turbolizer

# 获取依赖项

npm i

# 构建

npm run-script build

# 直接在turbolizer文件夹下启动静态http服务

python -m SimpleHTTPServer

构建turbolizer时可能会报一些TypeScript的语法错误ERROR,这些ERROR无伤大雅,不影响turbolizer的功能使用。

turbolizer 的使用方式如下:

首先编写一段测试函数

// 目标优化函数

function opt_me(b) {

let values = [42,1337];

let x = 10;

if (b == "foo")

x = 5;

let y = x + 2;

y = y + 1000;

y = y * 2;

y = y & 10;

y = y / 3;

y = y & 1;

return values[y];

}

// 必须!在优化该函数前必须先进行一次编译,以便于为该函数提供type feedback

opt_me();

// 必须! 使用v8 natives-syntax来强制优化该函数

%OptimizeFunctionOnNextCall(opt_me);

// 必须! 不调用目标函数则无法执行优化

opt_me();

一定要在执行%OptimizeFunctionOnNextCall(opt_me)之前调用一次目标函数,否则生成的graph将会因为没有type feedback而导致完全不一样的结果。

需要注意的是type feedback有点玄学,在执行OptimizeFunctionOnNextCall前,如果目标函数内部存在一些边界操作(例如多次使用超过Number.MAX_SAFE_INTEGER大小的整数等),那么调用目标函数的方式可能会影响turboFan的功能,包括但不限于传入参数的不同、调用目标函数次数的不同等等等等。

因此在执行%OptimizeFunctionOnNextCall前,目标函数的调用方式,必须自己把握,手动确认调用几次,传入什么参数会优化出特定的效果。

若想优化一个函数,除了可以使用%OptimizeFunctionOnNextCall以外,还可以多次执行该函数(次数要大,建议上for循环)来触发优化。

然后使用 d8 执行,不过需要加上--trace-turbo参数。

$ ../../v8/v8/out.gn/x64.debug/d8 test.js --allow-natives-syntax --trace-turbo

Concurrent recompilation has been disabled for tracing.

---------------------------------------------------

Begin compiling method opt_me using Turbofan

---------------------------------------------------

Finished compiling method opt_me using Turbofan

之后本地就会生成turbo.cfg和turbo-xxx-xx.json文件。

使用浏览器打开127.0.0.1:8000(注意之前在turbolizer文件夹下启动了http服务)然后点击右上角的3号按钮,在文件选择窗口中选择刚刚生成的turbo-xxx-xx.json文件,之后就会显示以下信息:不过这里的结点只显示了控制结点,如果需要显示全部结点,则先点击一下上方的2号按钮,将结点全部展开,之后再点击1号按钮,重新排列:

三、turboFan的代码优化

我们可以使用 --trace-opt参数来追踪函数的优化信息。以下是函数opt_me被turboFan优化时所生成的信息。

$ ../../v8/v8/out.gn/x64.debug/d8 test.js --allow-natives-syntax --trace-opt

[manually marking 0x0a7a24823759 for non-concurrent optimization]

[compiling method 0x0a7a24823759 using TurboFan]

[optimizing 0x0a7a24823759 - took 53.965, 19.410, 0.667 ms]

上面输出中的manually marking即我们在代码中手动设置的%OptimizeFunctionOnNextCall。

我们可以使用 v8 本地语法来查看优化前和优化后的机器码(使用%DisassembleFunction本地语法)

输出信息过长,这里只截取一部分输出。

$ ../../v8/v8/out.gn/x64.debug/d8 test.js --allow-natives-syntax

0x2b59fe964c1: [Code]

- map: 0x05116bd02ae9

kind = BUILTIN

name = InterpreterEntryTrampoline

compiler = unknown

address = 0x2b59fe964c1

Instructions (size = 995)

0x2b59fe96500 0 488b5f27 REX.W movq rbx,[rdi+0x27]

0x2b59fe96504 4 488b5b07 REX.W movq rbx,[rbx+0x7]

0x2b59fe96508 8 488b4b0f REX.W movq rcx,[rbx+0xf]

....

0x2b59ff49541: [Code]

- map: 0x05116bd02ae9

kind = OPTIMIZED_FUNCTION

stack_slots = 5

compiler = turbofan

address = 0x2b59ff49541

Instructions (size = 212)

0x2b59ff49580 0 488d1df9ffffff REX.W leaq rbx,[rip+0xfffffff9]

0x2b59ff49587 7 483bd9 REX.W cmpq rbx,rcx

0x2b59ff4958a a 7418 jz 0x2b59ff495a4 <+0x24>

0x2b59ff4958c c 48ba000000003e000000 REX.W movq rdx,0x3e00000000

...

可以看到,所生成的代码长度从原先的995,优化为212,大幅度优化了代码。

需要注意的是,即便不使用%OptimizeFunctionOnNextCall,将opt_me函数重复执行一定次数,一样可以触发TurboFan的优化。

细心的小伙伴应该可以在上面环境搭建的图中看到deoptimize反优化。为什么需要反优化?这就涉及到turboFan的优化机制。以下面这个js代码为例(注意:没有使用%OptimizeFunctionOnNextCall)

class Player{}

class Wall{}

function move(obj) {

var tmp = obj.x + 42;

var x = Math.random();

x += 1;

return tmp + x;

}

for (var i = 0; i < 0x10000; ++i) {

move(new Player());

}

move(new Wall());

for (var i = 0; i < 0x10000; ++i) {

move(new Wall());

}

跟踪一下该代码的opt以及deopt:

$ ../../v8/v8/out.gn/x64.debug/d8 test.js --allow-natives-syntax --trace-opt --trace-deopt

[marking 0x3c72eab23a99 for optimized recompilation, reason: small function, ICs with typeinfo: 7/7 (100%), generic ICs: 0/7 (0%)]

[compiling method 0x3c72eab23a99 using TurboFan]

[optimizing 0x3c72eab23a99 - took 6.583, 2.385, 0.129 ms]

[completed optimizing 0x3c72eab23a99 ]

# 分割线---------------------------------------------------------------------

[marking 0x3c72eab238e9 for optimized recompilation, reason: hot and stable, ICs with typeinfo: 7/13 (53%), generic ICs: 0/13 (0%)]

[compiling method 0x3c72eab238e9 using TurboFan OSR]

[optimizing 0x3c72eab238e9 - took 3.684, 7.337, 0.409 ms]

# 分割线---------------------------------------------------------------------

[deoptimizing (DEOPT soft): begin 0x3c72eab238e9 (opt #1) @6, FP to SP delta: 104, caller sp: 0x7ffed15d2a08]

;;; deoptimize at , Insufficient type feedback for construct

...

[deoptimizing (soft): end 0x3c72eab238e9 @6 => node=154, pc=0x7f0d956522e0, caller sp=0x7ffed15d2a08, took 0.496 ms]

[deoptimizing (DEOPT eager): begin 0x3c72eab23a99 (opt #0) @1, FP to SP delta: 24, caller sp: 0x7ffed15d2990]

;;; deoptimize at , wrong map

...

[deoptimizing (eager): end 0x3c72eab23a99 @1 => node=0, pc=0x7f0d956522e0, caller sp=0x7ffed15d2990, took 0.355 ms]

# 分割线---------------------------------------------------------------------

[marking 0x3c72eab23a99 for optimized recompilation, reason: small function, ICs with typeinfo: 7/7 (100%), generic ICs: 0/7 (0%)]

[compiling method 0x3c72eab23a99 using TurboFan]

[optimizing 0x3c72eab23a99 - took 1.435, 2.427, 0.159 ms]

[completed optimizing 0x3c72eab23a99 ]

[compiling method 0x3c72eab238e9 using TurboFan OSR]

[optimizing 0x3c72eab238e9 - took 3.399, 6.299, 0.239 ms]

首先,move函数被标记为可优化的(optimized recompilation),原因是该函数为small function。然后便开始重新编译以及优化。

之后,move函数再一次被标记为可优化的,原因是hot and stable。这是因为 v8 首先生成的是 ignition bytecode。 如果某个函数被重复执行多次,那么TurboFan就会重新生成一些优化后的代码。

以下是获取优化理由的的v8代码。如果该JS函数可被优化,则将在外部的v8函数中,mark该JS函数为待优化的。

OptimizationReason RuntimeProfiler::ShouldOptimize(JSFunction* function,

JavaScriptFrame* frame) {

SharedFunctionInfo* shared = function->shared();

int ticks = function->feedback_vector()->profiler_ticks();

if (shared->GetBytecodeArray()->length() > kMaxBytecodeSizeForOpt) {

return OptimizationReason::kDoNotOptimize;

}

int ticks_for_optimization =

kProfilerTicksBeforeOptimization +

(shared->GetBytecodeArray()->length() / kBytecodeSizeAllowancePerTick);

// 如果执行次数较多,则标记为HotAndStable

if (ticks >= ticks_for_optimization) {

return OptimizationReason::kHotAndStable;

// 如果函数较小,则为 small function

} else if (!any_ic_changed_ && shared->GetBytecodeArray()->length() <

kMaxBytecodeSizeForEarlyOpt) {

// If no IC was patched since the last tick and this function is very

// small, optimistically optimize it now.

return OptimizationReason::kSmallFunction;

} else if (FLAG_trace_opt_verbose) {

PrintF("[not yet optimizing ");

function->PrintName();

PrintF(", not enough ticks: %d/%d and ", ticks,

kProfilerTicksBeforeOptimization);

if (any_ic_changed_) {

PrintF("ICs changed]\n");

} else {

PrintF(" too large for small function optimization: %d/%d]\n",

shared->GetBytecodeArray()->length(), kMaxBytecodeSizeForEarlyOpt);

}

}

return OptimizationReason::kDoNotOptimize;

}

但接下来就开始deopt move函数了,原因是Insufficient type feedback for construct,目标代码是move(new Wall())中的new Wall()。这是因为turboFan的代码优化基于推测,即speculative optimizations。当我们多次执行move(new Player())时,turboFan会猜测move函数的参数总是Player对象,因此将move函数优化为更适合Player对象执行的代码,这样使得Player对象使用move函数时速度将会很快。这种猜想机制需要一种反馈来动态修改猜想,那么这种反馈就是 type feedback,Ignition instructions将利用 type feedback来帮助TurboFan的speculative optimizations。v8源码中,JSFunction类中存在一个类型为FeedbackVector的成员变量,该FeedbackVector将在JS函数被编译后启用。

因此一旦传入的参数不再是Player类型,即刚刚所说的Wall类型,那么将会使得猜想不成立,因此立即反优化,即销毁一部分的ignition bytecode并重新生成。

需要注意的是,反优化机制(deoptimization)有着巨大的性能成本,应尽量避免反优化的产生。

下一个deopt的原因为wrong map。这里的map可以暂时理解为类型。与上一条deopt的原因类似,所生成的move优化函数只是针对于Player对象,因此一旦传入一个Wall对象,那么传入的类型就与函数中的类型不匹配,所以只能开始反优化。

如果我们在代码中来回使用Player对象和Wall对象,那么TurboFan也会综合考虑,并相应的再次优化代码。

四、turboFan的执行流程

turboFan的代码优化有多条执行流,其中最常见到的是下面这条:

从Runtime_CompileOptimized_Concurrent函数开始,设置并行编译&优化 特定的JS函数

// v8\src\runtime\runtime-compiler.cc 46

RUNTIME_FUNCTION(Runtime_CompileOptimized_Concurrent) {

HandleScope scope(isolate);

DCHECK_EQ(1, args.length());

CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);

StackLimitCheck check(isolate);

if (check.JsHasOverflowed(kStackSpaceRequiredForCompilation * KB)) {

return isolate->StackOverflow();

}

// 设置并行模式,之后开始编译与优化

if (!Compiler::CompileOptimized(function, ConcurrencyMode::kConcurrent)) {

return ReadOnlyRoots(isolate).exception();

}

DCHECK(function->is_compiled());

return function->code();

}

在Compiler::CompileOptimized函数中,继续执行GetOptimizedCode函数,并将可能生成的优化代码传递给JSFunction对象。

// v8\src\compiler.cc

bool Compiler::CompileOptimized(Handle function,

ConcurrencyMode mode) {

if (function->IsOptimized()) return true;

Isolate* isolate = function->GetIsolate();

DCHECK(AllowCompilation::IsAllowed(isolate));

// Start a compilation.

Handle code;

if (!GetOptimizedCode(function, mode).ToHandle(&code)) {

// Optimization failed, get unoptimized code. Unoptimized code must exist

// already if we are optimizing.

DCHECK(!isolate->has_pending_exception());

DCHECK(function->shared()->is_compiled());

DCHECK(function->shared()->IsInterpreted());

code = BUILTIN_CODE(isolate, InterpreterEntryTrampoline);

}

// Install code on closure.

function->set_code(*code);

// Check postconditions on success.

DCHECK(!isolate->has_pending_exception());

DCHECK(function->shared()->is_compiled());

DCHECK(function->is_compiled());

DCHECK_IMPLIES(function->HasOptimizationMarker(),

function->IsInOptimizationQueue());

DCHECK_IMPLIES(function->HasOptimizationMarker(),

function->ChecksOptimizationMarker());

DCHECK_IMPLIES(function->IsInOptimizationQueue(),

mode == ConcurrencyMode::kConcurrent);

return true;

}

GetOptimizedCode的函数代码如下:

// v8\src\compiler.cc

MaybeHandle GetOptimizedCode(Handle function,

ConcurrencyMode mode,

BailoutId osr_offset = BailoutId::None(),

JavaScriptFrame* osr_frame = nullptr) {

Isolate* isolate = function->GetIsolate();

Handle shared(function->shared(), isolate);

// Make sure we clear the optimization marker on the function so that we

// don't try to re-optimize.

if (function->HasOptimizationMarker()) {

function->ClearOptimizationMarker();

}

if (isolate->debug()->needs_check_on_function_call()) {

// Do not optimize when debugger needs to hook into every call.

return MaybeHandle();

}

Handle cached_code;

if (GetCodeFromOptimizedCodeCache(function, osr_offset)

.ToHandle(&cached_code)) {

if (FLAG_trace_opt) {

PrintF("[found optimized code for ");

function->ShortPrint();

if (!osr_offset.IsNone()) {

PrintF(" at OSR AST id %d", osr_offset.ToInt());

}

PrintF("]\n");

}

return cached_code;

}

// Reset profiler ticks, function is no longer considered hot.

DCHECK(shared->is_compiled());

function->feedback_vector()->set_profiler_ticks(0);

VMState state(isolate);

DCHECK(!isolate->has_pending_exception());

PostponeInterruptsScope postpone(isolate);

bool has_script = shared->script()->IsScript();

// BUG(5946): This DCHECK is necessary to make certain that we won't

// tolerate the lack of a script without bytecode.

DCHECK_IMPLIES(!has_script, shared->HasBytecodeArray());

std::unique_ptr job(

compiler::Pipeline::NewCompilationJob(isolate, function, has_script));

OptimizedCompilationInfo* compilation_info = job->compilation_info();

compilation_info->SetOptimizingForOsr(osr_offset, osr_frame);

// Do not use TurboFan if we need to be able to set break points.

if (compilation_info->shared_info()->HasBreakInfo()) {

compilation_info->AbortOptimization(BailoutReason::kFunctionBeingDebugged);

return MaybeHandle();

}

// Do not use TurboFan when %NeverOptimizeFunction was applied.

if (shared->optimization_disabled() &&

shared->disable_optimization_reason() ==

BailoutReason::kOptimizationDisabledForTest) {

compilation_info->AbortOptimization(

BailoutReason::kOptimizationDisabledForTest);

return MaybeHandle();

}

// Do not use TurboFan if optimization is disabled or function doesn't pass

// turbo_filter.

if (!FLAG_opt || !shared->PassesFilter(FLAG_turbo_filter)) {

compilation_info->AbortOptimization(BailoutReason::kOptimizationDisabled);

return MaybeHandle();

}

TimerEventScope optimize_code_timer(isolate);

RuntimeCallTimerScope runtimeTimer(isolate,

RuntimeCallCounterId::kOptimizeCode);

TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.OptimizeCode");

// In case of concurrent recompilation, all handles below this point will be

// allocated in a deferred handle scope that is detached and handed off to

// the background thread when we return.

base::Optional compilation;

if (mode == ConcurrencyMode::kConcurrent) {

compilation.emplace(isolate, compilation_info);

}

// All handles below will be canonicalized.

CanonicalHandleScope canonical(isolate);

// Reopen handles in the new CompilationHandleScope.

compilation_info->ReopenHandlesInNewHandleScope(isolate);

if (mode == ConcurrencyMode::kConcurrent) {

if (GetOptimizedCodeLater(job.get(), isolate)) {

job.release(); // The background recompile job owns this now.

// Set the optimization marker and return a code object which checks it.

function->SetOptimizationMarker(OptimizationMarker::kInOptimizationQueue);

DCHECK(function->IsInterpreted() ||

(!function->is_compiled() && function->shared()->IsInterpreted()));

DCHECK(function->shared()->HasBytecodeArray());

return BUILTIN_CODE(isolate, InterpreterEntryTrampoline);

}

} else {

if (GetOptimizedCodeNow(job.get(), isolate))

return compilation_info->code();

}

if (isolate->has_pending_exception()) isolate->clear_pending_exception();

return MaybeHandle();

}

函数代码有点长,这里总结一下所做的操作:

如果之前该函数被mark为待优化的,则取消该mark(回想一下--trace-opt的输出)

如果debugger需要hook该函数,或者在该函数上下了断点,则不优化该函数,直接返回。

如果之前已经优化过该函数(存在OptimizedCodeCache),则直接返回之前优化后的代码。

重置当前函数的profiler ticks,使得该函数不再hot,这样做的目的是使当前函数不被重复优化。

如果设置了一些禁止优化的参数(例如%NeverOptimizeFunction,或者设置了turbo_filter),则取消当前函数的优化。

以上步骤完成后则开始优化代码,优化代码也有两种不同的方式,分别是并行优化和非并行优化。在大多数情况下执行的都是并行优化,因为速度更快。并行优化会先执行GetOptimizedCodeLater函数,在该函数中判断一些异常条件,例如任务队列已满或者内存占用过高。如果没有异常条件,则执行OptimizedCompilationJob::PrepareJob函数,并继续在更深层次的调用PipelineImpl::CreateGraph来建图。如果GetOptimizedCodeLater函数工作正常,则将会把优化任务Job放入任务队列中。任务队列将安排另一个线程执行优化操作。另一个线程的栈帧如下,该线程将执行Job->ExecuteJob并在更深层次调用PipelineImpl::OptimizeGraph来优化之前建立的图结构:

当另一个线程在优化代码时,主线程可以继续执行其他任务:

综上我们可以得知,JIT最终的优化位于PipelineImpl类中,包括建图以及优化图等

// v8\src\compiler\pipeline.cc

class PipelineImpl final {

public:

explicit PipelineImpl(PipelineData* data) : data_(data) {}

// Helpers for executing pipeline phases.

template

void Run();

template

void Run(Arg0 arg_0);

template

void Run(Arg0 arg_0, Arg1 arg_1);

// Step A. Run the graph creation and initial optimization passes.

bool CreateGraph();

// B. Run the concurrent optimization passes.

bool OptimizeGraph(Linkage* linkage);

// Substep B.1. Produce a scheduled graph.

void ComputeScheduledGraph();

// Substep B.2. Select instructions from a scheduled graph.

bool SelectInstructions(Linkage* linkage);

// Step C. Run the code assembly pass.

void AssembleCode(Linkage* linkage);

// Step D. Run the code finalization pass.

MaybeHandle FinalizeCode();

// Step E. Install any code dependencies.

bool CommitDependencies(Handle code);

void VerifyGeneratedCodeIsIdempotent();

void RunPrintAndVerify(const char* phase, bool untyped = false);

MaybeHandle GenerateCode(CallDescriptor* call_descriptor);

void AllocateRegisters(const RegisterConfiguration* config,

CallDescriptor* call_descriptor, bool run_verifier);

OptimizedCompilationInfo* info() const;

Isolate* isolate() const;

CodeGenerator* code_generator() const;

private:

PipelineData* const data_;

};

五、初探optimization phases

1. 简介

与LLVM IR的各种Pass类似,turboFan中使用各类phases进行建图、搜集信息以及简化图。

以下是PipelineImpl::CreateGraph函数源码,其中使用了大量的Phase。这些Phase有些用于建图,有些用于优化(在建图时也会执行一部分简单的优化),还有些为接下来的优化做准备:

bool PipelineImpl::CreateGraph() {

PipelineData* data = this->data_;

data->BeginPhaseKind("graph creation");

if (info()->trace_turbo_json_enabled() ||

info()->trace_turbo_graph_enabled()) {

CodeTracer::Scope tracing_scope(data->GetCodeTracer());

OFStream os(tracing_scope.file());

os << "---------------------------------------------------\n"

<< "Begin compiling method " << info()->GetDebugName().get()

<< " using Turbofan" << std::endl;

}

if (info()->trace_turbo_json_enabled()) {

TurboCfgFile tcf(isolate());

tcf << AsC1VCompilation(info());

}

data->source_positions()->AddDecorator();

if (data->info()->trace_turbo_json_enabled()) {

data->node_origins()->AddDecorator();

}

Run();

RunPrintAndVerify(GraphBuilderPhase::phase_name(), true);

// Perform function context specialization and inlining (if enabled).

Run();

RunPrintAndVerify(InliningPhase::phase_name(), true);

// Remove dead->live edges from the graph.

Run();

RunPrintAndVerify(EarlyGraphTrimmingPhase::phase_name(), true);

// Run the type-sensitive lowerings and optimizations on the graph.

{

// Determine the Typer operation flags.

Typer::Flags flags = Typer::kNoFlags;

if (is_sloppy(info()->shared_info()->language_mode()) &&

info()->shared_info()->IsUserJavaScript()) {

// Sloppy mode functions always have an Object for this.

flags |= Typer::kThisIsReceiver;

}

if (IsClassConstructor(info()->shared_info()->kind())) {

// Class constructors cannot be [[Call]]ed.

flags |= Typer::kNewTargetIsReceiver;

}

// Type the graph and keep the Typer running on newly created nodes within

// this scope; the Typer is automatically unlinked from the Graph once we

// leave this scope below.

Typer typer(isolate(), data->js_heap_broker(), flags, data->graph());

Run(&typer);

RunPrintAndVerify(TyperPhase::phase_name());

// Do some hacky things to prepare for the optimization phase.

// (caching handles, etc.).

Run();

if (FLAG_concurrent_compiler_frontend) {

data->js_heap_broker()->SerializeStandardObjects();

Run();

}

// Lower JSOperators where we can determine types.

Run();

RunPrintAndVerify(TypedLoweringPhase::phase_name());

}

data->EndPhaseKind();

return true;

}

PipelineImpl::OptimizeGraph函数代码如下,该函数将会对所建立的图进行优化:

bool PipelineImpl::OptimizeGraph(Linkage* linkage) {

PipelineData* data = this->data_;

data->BeginPhaseKind("lowering");

if (data->info()->is_loop_peeling_enabled()) {

Run();

RunPrintAndVerify(LoopPeelingPhase::phase_name(), true);

} else {

Run();

RunPrintAndVerify(LoopExitEliminationPhase::phase_name(), true);

}

if (FLAG_turbo_load_elimination) {

Run();

RunPrintAndVerify(LoadEliminationPhase::phase_name());

}

if (FLAG_turbo_escape) {

Run();

if (data->compilation_failed()) {

info()->AbortOptimization(

BailoutReason::kCyclicObjectStateDetectedInEscapeAnalysis);

data->EndPhaseKind();

return false;

}

RunPrintAndVerify(EscapeAnalysisPhase::phase_name());

}

// Perform simplified lowering. This has to run w/o the Typer decorator,

// because we cannot compute meaningful types anyways, and the computed types

// might even conflict with the representation/truncation logic.

Run();

RunPrintAndVerify(SimplifiedLoweringPhase::phase_name(), true);

// From now on it is invalid to look at types on the nodes, because the types

// on the nodes might not make sense after representation selection due to the

// way we handle truncations; if we'd want to look at types afterwards we'd

// essentially need to re-type (large portions of) the graph.

// In order to catch bugs related to type access after this point, we now

// remove the types from the nodes (currently only in Debug builds).

#ifdef DEBUG

Run();

RunPrintAndVerify(UntyperPhase::phase_name(), true);

#endif

// Run generic lowering pass.

Run();

RunPrintAndVerify(GenericLoweringPhase::phase_name(), true);

data->BeginPhaseKind("block building");

// Run early optimization pass.

Run();

RunPrintAndVerify(EarlyOptimizationPhase::phase_name(), true);

Run();

RunPrintAndVerify(EffectControlLinearizationPhase::phase_name(), true);

if (FLAG_turbo_store_elimination) {

Run();

RunPrintAndVerify(StoreStoreEliminationPhase::phase_name(), true);

}

// Optimize control flow.

if (FLAG_turbo_cf_optimization) {

Run();

RunPrintAndVerify(ControlFlowOptimizationPhase::phase_name(), true);

}

// Optimize memory access and allocation operations.

Run();

// TODO(jarin, rossberg): Remove UNTYPED once machine typing works.

RunPrintAndVerify(MemoryOptimizationPhase::phase_name(), true);

// Lower changes that have been inserted before.

Run();

// TODO(jarin, rossberg): Remove UNTYPED once machine typing works.

RunPrintAndVerify(LateOptimizationPhase::phase_name(), true);

data->source_positions()->RemoveDecorator();

if (data->info()->trace_turbo_json_enabled()) {

data->node_origins()->RemoveDecorator();

}

ComputeScheduledGraph();

return SelectInstructions(linkage);

}

由于上面两个函数涉及到的Phase众多,这里请各位自行阅读源码来了解各个Phase的具体功能。

接下来我们只介绍几个比较重要的Phases:GraphBuilderPhase、TyperPhase和SimplifiedLoweringPhase。

2. GraphBuilderPhase

GraphBuilderPhase将遍历字节码,并建一个初始的图,这个图将用于接下来Phase的处理,包括但不限于各种代码优化。

一个简单的例子

3. TyperPhase

TyperPhase将会遍历整个图的所有结点,并给每个结点设置一个Type属性,该操作将在建图完成后被执行给每个结点设置Type的操作是不是极其类似于编译原理中的语义分析呢? XD

bool PipelineImpl::CreateGraph() {

// ...

Run();

RunPrintAndVerify(GraphBuilderPhase::phase_name(), true);

// ...

// Run the type-sensitive lowerings and optimizations on the graph.

{

// ...

// Type the graph and keep the Typer running on newly created nodes within

// this scope; the Typer is automatically unlinked from the Graph once we

// leave this scope below.

Typer typer(isolate(), data->js_heap_broker(), flags, data->graph());

Run(&typer);

RunPrintAndVerify(TyperPhase::phase_name());

// ...

}

// ...

}

其中,具体执行的是TyperPhase::Run函数:

struct TyperPhase {

static const char* phase_name() { return "typer"; }

void Run(PipelineData* data, Zone* temp_zone, Typer* typer) {

// ...

typer->Run(roots, &induction_vars);

}

};

在该函数中继续调用Typer::Run函数,并在GraphReducer::ReduceGraph函数中最终调用到Typer::Visitor::Reduce函数:

void Typer::Run(const NodeVector& roots,

LoopVariableOptimizer* induction_vars) {

// ...

Visitor visitor(this, induction_vars);

GraphReducer graph_reducer(zone(), graph());

graph_reducer.AddReducer(&visitor);

for (Node* const root : roots) graph_reducer.ReduceNode(root);

graph_reducer.ReduceGraph();

// ...

}

在Typer::Visitor::Reduce函数中存在一个较大的switch结构,通过该switch结构,当Visitor遍历每个node时,即可最终调用到对应的XXXTyper函数。

例如,对于一个JSCall结点,将在TyperPhase中最终调用到Typer::Visitor::JSCallTyper

这里我们简单看一下JSCallTyper函数源码,该函数中存在一个很大的switch结构,该结构将设置每个Builtin函数结点的Type属性,即函数的返回值类型。

Type Typer::Visitor::JSCallTyper(Type fun, Typer* t) {

if (!fun.IsHeapConstant() || !fun.AsHeapConstant()->Ref().IsJSFunction()) {

return Type::NonInternal();

}

JSFunctionRef function = fun.AsHeapConstant()->Ref().AsJSFunction();

if (!function.shared().HasBuiltinFunctionId()) {

return Type::NonInternal();

}

switch (function.shared().builtin_function_id()) {

case BuiltinFunctionId::kMathRandom:

return Type::PlainNumber();

// ...

而对于一个常数NumberConstant类型,TyperPhase也会打上一个对应的类型

Type Typer::Visitor::TypeNumberConstant(Node* node)

// 注意这里使用的是double,这也就说明了为什么Number.MAX_SAFE_INTEGER = 9007199254740991

double number = OpParameter(node->op());

return Type::NewConstant(number, zone());

}

而在Type::NewConstant函数中,我们会发现一个神奇的设计:

Type Type::NewConstant(double value, Zone* zone) {

// 对于一个正常的整数

if (RangeType::IsInteger(value)) {

// 实际上所设置的Type是一个range!

return Range(value, value, zone);

// 否则如果是一个异常的-0,则返回对应的MinusZero

} else if (IsMinusZero(value)) {

return Type::MinusZero();

// 如果是NAN,则返回NaN

} else if (std::isnan(value)) {

return Type::NaN();

}

DCHECK(OtherNumberConstantType::IsOtherNumberConstant(value));

return OtherNumberConstant(value, zone);

}

对于JS代码中的一个NumberConstant,实际上设置的Type是一个Range,只不过这个Range的首尾范围均是该数,例如NumberConstant(3) => Range(3, 3, zone)

以下这张图可以证明TyperPhase正如预期那样执行:

与之相应的,v8采用了SSA。因此对于一个Phi结点,它将设置该节点的Type为几个可能值的Range的并集。

Type Typer::Visitor::TypePhi(Node* node) {

int arity = node->op()->ValueInputCount();

Type type = Operand(node, 0);

for (int i = 1; i < arity; ++i) {

type = Type::Union(type, Operand(node, i), zone());

}

return type;

}

请看以下示例:

4. SimplifiedLoweringPhase

SimplifiedLoweringPhase会遍历结点做一些处理,同时也会对图做一些优化操作。这里我们只关注该Phase优化CheckBound的细节,因为CheckBound通常是用于判断 JS数组(例如ArrayBuffer) 是否越界使用 所设置的结点。

首先我们可以通过以下路径来找到优化CheckBound的目标代码:

SimplifiedLoweringPhase::Run

SimplifiedLowering::LowerAllNodes

RepresentationSelector::Run

RepresentationSelector::VisitNode

目标代码如下:

// Dispatching routine for visiting the node {node} with the usage {use}.

// Depending on the operator, propagate new usage info to the inputs.

void VisitNode(Node* node, Truncation truncation,

SimplifiedLowering* lowering) {

// Unconditionally eliminate unused pure nodes (only relevant if there's

// a pure operation in between two effectful ones, where the last one

// is unused).

// Note: We must not do this for constants, as they are cached and we

// would thus kill the cached {node} during lowering (i.e. replace all

// uses with Dead), but at that point some node lowering might have

// already taken the constant {node} from the cache (while it was in

// a sane state still) and we would afterwards replace that use with

// Dead as well.

if (node->op()->ValueInputCount() > 0 &&

node->op()->HasProperty(Operator::kPure)) {

if (truncation.IsUnused()) return VisitUnused(node);

}

switch (node->opcode()) {

// ...

case IrOpcode::kCheckBounds: {

const CheckParameters& p = CheckParametersOf(node->op());

Type index_type = TypeOf(node->InputAt(0));

Type length_type = TypeOf(node->InputAt(1));

if (index_type.Is(Type::Integral32OrMinusZero())) {

// Map -0 to 0, and the values in the [-2^31,-1] range to the

// [2^31,2^32-1] range, which will be considered out-of-bounds

// as well, because the {length_type} is limited to Unsigned31.

VisitBinop(node, UseInfo::TruncatingWord32(),

MachineRepresentation::kWord32);

if (lower() && lowering->poisoning_level_ ==

PoisoningMitigationLevel::kDontPoison) {

// 可以看到,如果当前索引的最大值小于length的最小值,则表示当前索引的使用没有越界

if (index_type.IsNone() || length_type.IsNone() ||

(index_type.Min() >= 0.0 &&

index_type.Max() < length_type.Min())) {

// The bounds check is redundant if we already know that

// the index is within the bounds of [0.0, length[.

// CheckBound将会被优化

DeferReplacement(node, node->InputAt(0));

}

}

} else {

VisitBinop(

node,

UseInfo::CheckedSigned32AsWord32(kIdentifyZeros, p.feedback()),

UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);

}

return;

}

// ....

}

// ...

}

可以看到,在CheckBound的优化判断逻辑中,如果当前索引的最大值小于length的最小值,则表示当前索引的使用没有越界,此时将会移除CheckBound结点以简化IR图。

需要注意NumberConstant结点的Type是一个Range类型,因此才会有最大值Max和最小值Min的概念。

这里需要解释一下环境搭配中所说的,为什么要添加一个编译参数v8_optimized_debug = false,注意看上面判断条件中的这行条件

if (lower() && lowering->poisoning_level_ ==

PoisoningMitigationLevel::kDontPoison)

visitNode时有三个状态,分别是Phase::PROPAGATE(信息收集)、Phase::RETYPE(从类型反馈中获取类型)以及Phase::LOWER(开始优化)。当真正开始优化时,lower()条件自然成立,因此我们无需处理这个。

但对于下一个条件,通过动态调试可以得知,poisoning_level始终不为PoisoningMitigationLevel::kDontPoison。通过追溯lowering->poisoning_level_,我们可以发现它实际上在PipelineCompilationJob::PrepareJobImpl中被设置

PipelineCompilationJob::Status PipelineCompilationJob::PrepareJobImpl(

Isolate* isolate) {

// ...

// Compute and set poisoning level.

PoisoningMitigationLevel load_poisoning =

PoisoningMitigationLevel::kDontPoison;

if (FLAG_branch_load_poisoning) {

load_poisoning = PoisoningMitigationLevel::kPoisonAll;

} else if (FLAG_untrusted_code_mitigations) {

load_poisoning = PoisoningMitigationLevel::kPoisonCriticalOnly;

}

// ...

}

而FLAG_branch_load_poisoning始终为false,FLAG_untrusted_code_mitigations始终为true

编译参数v8_untrusted_code_mitigations 默认 true,使得宏DISABLE_UNTRUSTED_CODE_MITIGATIONS没有被定义,因此默认设置FLAG_untrusted_code_mitigations = true

// v8/src/flag-definitions.h

// 设置`FLAG_untrusted_code_mitigations`

#ifdef DISABLE_UNTRUSTED_CODE_MITIGATIONS

#define V8_DEFAULT_UNTRUSTED_CODE_MITIGATIONS false

#else

#define V8_DEFAULT_UNTRUSTED_CODE_MITIGATIONS true

#endif

DEFINE_BOOL(untrusted_code_mitigations, V8_DEFAULT_UNTRUSTED_CODE_MITIGATIONS,

"Enable mitigations for executing untrusted code")

#undef V8_DEFAULT_UNTRUSTED_CODE_MITIGATIONS

// 设置`FLAG_branch_load_poisoning`

DEFINE_BOOL(branch_load_poisoning, false, "Mask loads with branch conditions.")

# BUILD.gn

declare_args() {

# ...

# Enable mitigations for executing untrusted code.

# 默认为true

v8_untrusted_code_mitigations = true

# ...

}

# ...

if (!v8_untrusted_code_mitigations) {

defines += [ "DISABLE_UNTRUSTED_CODE_MITIGATIONS" ]

}

# ...

这样就会使得load_poisoning始终为PoisoningMitigationLevel::kPoisonCriticalOnly,因此始终无法执行checkBounds的优化操作。所以我们需要手动设置编译参数v8_untrusted_code_mitigations = false,以启动checkbounds的优化。

以下是一个简单checkbounds优化的例子

function f(x)

{

const arr = new Array(1.1, 2.2, 3.3, 4.4, 5.5);

let t = 1 + 1;

return arr[t];

}

console.log(f(1));

%OptimizeFunctionOnNextCall(f);

console.log(f(1));

优化前发现存在一个checkBounds:

执行完SimplifiedLoweringPhase后,CheckBounds被优化了:

◈ 相关文章

58千克等于多少磅?
⌹ 365bet现场滚球

▷ 58千克等于多少磅?

⏱️ 07-02 👁️‍🗨️ 5535
范志毅在世界杯上的表现:他到底打了几场比赛?
⌹ 365bet线上

▷ 范志毅在世界杯上的表现:他到底打了几场比赛?

⏱️ 07-09 👁️‍🗨️ 4931
移动10元流量套餐,月10GB流量,性价比之王
⌹ 365bet线上

▷ 移动10元流量套餐,月10GB流量,性价比之王

⏱️ 07-04 👁️‍🗨️ 4040